1. MAXIMUM PRINCIPLE WITH NEUMANN BOUNDARY CONDITION

Theorem 1. $u: [-L, L] \times [0, T) \rightarrow \mathbb{R}$ is a smooth function satisfying

$$u_t \leqslant u_{xx},$$
 for $|x| \leqslant L, 0 \leqslant t,$ (1)

$$u_x(-L,t) \geqslant 0 \geqslant u_x(L,t),$$
 for $0 \leqslant t,$ (2)

$$u(x,0) \leqslant 0,$$
 for $|x| \leqslant L.$ (3)

Then, we have

$$u(x,t) \leqslant 0 \tag{4}$$

for all $|x| \le L$, $0 \le t$.

Proof. Given $\epsilon > 0$, we define

$$u^{\epsilon}(x,t) = \epsilon \left[x^2 + 3t + 1 \right] \tag{5}$$

Then, we have

$$u_t^{\epsilon} = 3\epsilon > 2\epsilon = u_{xx},$$
 for $|x| \le L, 0 \le t,$ (6)

$$u_x(-L,t) = -2L < 0, \ u_x(L,t) = 2L > 0,$$
 for $0 \le t$, (7)

$$u^{\epsilon}(x,0) \geqslant \epsilon > 0,$$
 for $|x| \leqslant L.$ (8)

We claim $u(x,t) < u^{\epsilon}(x,t)$ holds for all (x,t). Suppose that it fails. Then, since $u^{\epsilon}(x,0) > u(x,0)$, there exists some $(x_0,t_0) \in [-L,L] \times (0,T)$ such that $u(x,t) < u^{\epsilon}(x,t)$ holds for all $|x| \in L$ and $t \in (0,t_0)$, and we have $u(x_0,t_0) = u^{\epsilon}(x_0,t_0)$.

Case 1. Suppose $|x_0| < L$.

We define $w(x,t) = u^{\epsilon}(x,t) - u(x,t)$. Then, w(x,t) > 0 for $t < t_0$ implies $w(x,t_0) \ge 0$. Moreover, we have $w(x_0,t_0)$ by definition of (x_0,t_0) . Namely, $w(x,t_0)$ attains its minimum at the interior point x_0 . Hence, we have $w_{xx}(x_0,t_0) \ge 0$, namely

$$u_{xx}^{\epsilon}(x_0, t_0) \geqslant u_{xx}(x_0, t_0).$$
 (9)

However, $w(x_0, t) > 0 = w(x_0, t_0)$ for $t < t_0$ implies

$$u_t^{\epsilon}(x_0, t_0) - u_t(x_0, t_0) = w_t(x_0, t_0) = \lim_{t \to t_0} \frac{w(x_0, t_0) - w(x_0, t)}{t_0 - t} \le 0.$$
 (10)

Therefore, we have a contradiction

$$u_t^{\epsilon}(x_0, t_0) > u_{xx}^{\epsilon}(x_0, t_0) \geqslant u_{xx}(x_0, t_0) \geqslant u_t(x_0, t_0) \geqslant u_t^{\epsilon}(x_0, t_0). \tag{11}$$

Case 2. Suppose $|x_0| = L$.

Without loss of generality, we consider the case $x_0 = L$. We recall $w(x, t_0) \ge w(x_0, t_0) = w(L, t_0)$ holds for $|x| \le L$. Therefore,

$$w_x(L, t_0) = \lim_{x \to L} \frac{w(L, t_0) - w(x, t_0)}{L - x} \ge 0.$$
 (12)

This yields a contradiction to the given boundary condition.

$$-2L = u_x^{\epsilon}(L, t_0) \geqslant u_x(L, t_0) = 0. \tag{13}$$

Corollary 2. $u: [-L, L] \times [0, T) \rightarrow \mathbb{R}$ is a smooth function satisfying

$$u_t \leqslant u_{xx},$$
 for $|x| \leqslant L, 0 \leqslant t,$ (14)

$$u_x(-L,t) \geqslant 0 \geqslant u_x(L,t),$$
 for $0 \leqslant t,$ (15)

$$u(x,0) = g(x), for |x| \le L. (16)$$

Then, we have

$$u(x,t) \leqslant \max_{|x| \leqslant L} g(x). \tag{17}$$

for all $|x| \le L$, $0 \le t$.

Proof. We define $v(x,t) = u(x,t) - \max g$, and apply the maximum principle.

2. Decay estimate

We begin with establishing a Poincare type inequality.

Lemma 3 (1D Poincare inequality). Suppose that a smooth function $u : [0,1] \to \mathbb{R}$ has a point $x_0 \in [0,1]$ satisfying $u(x_0) = 0$. Then, the following holds for all $x \in [0,1]$.

$$|u(x)|^2 \le 4 \int_0^1 |u'(s)|^2 ds$$
 (18)

Proof. Let u attain its maximum at x_1 . Without loss of generality, we assume $x_1 \ge x_0$.

$$|u(x_1)|^2 = |u(x_1)|^2 - |u(x_0)|^2 = \int_{x_0}^{x_1} \frac{d}{ds} |u(s)|^2 ds = \int_{x_0}^{x_1} 2uu' ds.$$
 (19)

By the Arithmetic Mean-Geometric Mean inequality, we have

$$\frac{1}{2}u^2 + 2|u'|^2 \geqslant 2uu'. \tag{20}$$

Hence,

$$|u(x_1)|^2 \leqslant \int_{x_0}^{x_1} \frac{1}{2}u^2 + 2|u'|^2 ds \leqslant \int_0^1 \frac{1}{2}u^2 + 2|u'|^2 ds \leqslant \frac{1}{2}|u(x_1)|^2 + 2\int_0^1 |u'|^2 ds. \tag{21}$$

Therefore, we obtain the desired result.

$$\frac{1}{2}|u(x_1)|^2 \le 2\int_0^1 |u'|^2 ds \tag{22}$$

Theorem 4. $u:[0,1]\times[0,T)\to\mathbb{R}$ is a smooth function satisfying

$$u_t = u_{xx}, for 0 \le x \le 1, 0 \le t, (23)$$

$$u(0,t) = u(1,t) = 0,$$
 for $0 \le t,$ (24)

$$u(x,0) = g(x), for 0 \le x \le 1. (25)$$

Then, we have

$$\int_0^1 |u(x,t)|^2 dx \le e^{-\frac{t}{2}} \int_0^1 |g(x)|^2 dx. \tag{26}$$

Namely, $\lim_{t\to 0} \int u^2 dx = 0$.

Proof. We define an energy

$$E(t) = \int_0^1 |u(x,t)|^2 dx.$$
 (27)

Then,

$$\frac{d}{dt}E(t) = \int_0^1 2uu_t dx = \int_0^1 2uu_{xx} dx = 2uu_x \Big|_0^1 - 2\int_0^1 u_x^2 dx = -2\int_0^1 u_x^2 dx. \tag{28}$$

Since u(0,t) = u(1,t) = 0, we can apply the lemma above so that

$$\frac{d}{dt}E(t) \leqslant -\frac{1}{2} \max_{0 \leqslant x \leqslant 1} |u(x,t)|^2 = -\frac{1}{2} \int_0^1 \max_{0 \leqslant x \leqslant 1} |u(x,t)|^2 dx \leqslant -\frac{1}{2}E(t). \tag{29}$$

Therefore,

$$\frac{d}{dt}\left(e^{\frac{t}{2}}E(t)\right) = e^{\frac{t}{2}}E'(t) + \frac{1}{2}e^{\frac{t}{2}}E(t) \le 0.$$
 (30)

This gives the desired result.

$$e^{\frac{t}{2}}E(t) \leqslant \int_0^1 g^2(x)dx. \tag{31}$$

3. Review: Fourier series

We recall the Fourier series. In this class, we will use the following fact without proofs.

Given a smooth function $f: [-L, L] \to \mathbb{R}$ with f(-L) = f(L), the following holds

$$\lim_{N\to+\infty} \sup_{|x|\leqslant L} |f(x) - S_N(x)| = 0,$$

for the partial sums $S_N(x)$ of Fourier series,

$$S_N(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} a_m \cos(m\pi x/L) + \sum_{m=1}^{\infty} b_m \sin(m\pi x/L),$$

where

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx, \quad a_m = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{m\pi x}{L}\right) dx, \quad b_m = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx.$$

Suppose that $f:[0,L]\to\mathbb{R}$ is a smooth function satisfying f(0)=0. Then,

$$\lim_{N\to+\infty}\sup_{0\leqslant\leqslant L}|f(x)-S_N(x)|=0,$$

holds for the partial sums $S_N(x)$ of Fourier sine series,

$$S_N(x) = \sum_{m=1}^{\infty} b_m \sin(m\pi x/L),$$

where

$$b_m = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{m\pi x}{L}\right) dx.$$

Suppose that $f:[0,L]\to\mathbb{R}$ is a smooth function satisfying f'(0)=0. Then,

$$\lim_{N\to+\infty}\sup_{0\leqslant\leqslant L}|f(x)-S_N(x)|=0,$$

holds for the partial sums $S_N(x)$ of Fourier cosine series,

$$S_N(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} a_m \cos(m\pi x/L),$$

where

$$a_0 = \frac{2}{L} \int_0^L f(x) dx, \qquad a_m = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{m\pi x}{L}\right) dx.$$

4. Review: ODE

We recall the some well-known results in ODEs. We will also use them without proofs.

Suppose that a function u(x) satisfies the following differential equation

$$u''(x) + \mu^2 u(x) = 0. (32)$$

Then,

$$u(x) = c_1 \sin(\mu x) + c_2 \cos(\mu x),$$
 (33)

for some constants c_1 , c_2 depending on initial (or boundary data). For example, if u(x) satisfies u(0) = 0 and u'(0) = 1, then the constants must be $c_1 = \mu^{-1}$ and $c_2 = 0$.

Suppose that a function u(x) satisfies the following differential equation

$$u'(x) = \lambda u(x). \tag{34}$$

Then,

$$u(x) = ce^{\lambda x}, (35)$$

for some constant c depending on the initial data.